在总结心得体会的过程中,我们可以回顾自己的成长历程,从中汲取智慧并丰富自己的人生经验。以下是一些发人深思的心得体会,希望可以引起大家对于自身成长和发展的思考和反思。
大数据时代心得体会总结
《大数据时代》这本书写的很好,很值得一读,因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。下面是本站小编为大家收集整理的大数据时代。
总结,欢迎大家阅读。
利用周末,一口气读完了涂子沛的大作《大数据》。这本书很好看,行文如流水,引人入胜。书中,你读到的不是大数据技术,更多是与大数据相关的美国政治、经济、社会和文化的演进。作为一名信息化从业者,读完全书,我深刻感受到了在信息化方面中国与美国的各自特色,也看到了我们与美国的差距。有几个方面的体会,但窥一斑基本能见全貌。
一是政府业务数据库公开的广度和深度。近年来,随着我国信息公开工作的推进,各级政府都在通过政府门户网站建设积极推进网上政务信息公开,但我们的信息公开,现阶段还主要是政府的政策、法律法规、标准、公文通告、工作职责、办事指南、工作动态、人事任免等行政事务性信息的公开。当然,实时的政府业务数据库公开也已经取得很大进步。在中国政府门户网,可以查询一些公益数据库,如国家统计局的经济统计数据、环保部数据中心提供的全国空气、水文等数据,气象总局提供的全国气象数据,民航总局提供的全国航班信息等;访问各个部委的网站,也能查到很多业务数据,如发改委的项目立项库、工商局的企业信用库、国土资源部的土地证库、国家安监总局的煤矿安全预警信息库、各类工程招标信息库等等。这是一个非常大的进步,也是这么多年电子政务建设所取得的成效和价值!但是,政务业务数据库中的很多数据目前还没有实现公开,很多数据因为部门利益和“保密”等因素,还仅限于部门内部人员使用,没有公开给公众;已经公开的数据也仅限于一部分基本信息和统计信息,更多数据还没有被公开。从《大数据》一书中记录的美国数据公开的实践来看,美国在数据公开的广度和深度都比较大。美国人认为“用纳税人的钱收集的数据应该免费提供给纳税人使用”,尽管美国政府事实上对数据的公开也有抵触,但民愿不可违,美国政府的业务数据越来越公开,尤其是在奥巴马政府签署《透明和开放的政府》文件后,开放力度更加大。是美国联盟政府新建设的统一的数据开放门户网站,网站按照原始数据、地理数据和数据应用工具来组织开放的各类数据,累积开放378529个原始和地理数据集。在中国尚没有这样的数据开放的网站。另外,由于制度的不同,美国业务信息公开的深度也很大,例如,网上公布的美国总统“白宫访客记录”公布的甚至是造访白宫的各类人员的相关信息;美国的网站,能够逐条跟踪、记录、分析联邦政府每一笔财政支出。这在中国,目前应该还没有实现。
二是对政府对业务数据的分析。目前,中国各级政府网站所提供的业务数据基本上还是数据表,部分网站能提供一些统计图,但很少能实现数据的跨部门联机分析、数据关联分析。这主要是由于以往中国政务信息化的建设还处于部门建设阶段。美国在这方面的步伐要快一些,美国的网站,不仅提供原始数据和地理数据,还提供很多数据工具,这些工具很多都是公众、公益组织和一些商业机构提供的,这些应用为数据处理、联机分析、基于社交网络的关联分析等方面提供手段。如上提供的白宫访客搜索工具,可以搜寻到访客信息,并将白宫访客与其他微博、社交网站等进行关联,提高访客的透明度。
三是关于个人数据的隐私。在美国,公民的隐私和自有不可侵犯,美国没有个人身份证,也不能建立基于个人身份证号码的个人信息的关联,建立“中央数据银行”的提案也一再被否决。这一点,在中国不是问题,每个公民有唯一的身份信息,通过身份证信息,可以获取公民的基本信息。今后,随着国家人口基础数据库等基础资源库的建设,公民的社保、医疗等其他相关信息也能方便获取,当然信息还是限于政府部门使用,但很难完全保证整合起来的这些个人信息不被泄露或者利用。
数据是信息化建设的基础,两个大国在大数据领域的互相学习和借鉴,取长补短,将推进世界进入信息时代。我欣喜地看到,美国政府20xx年启动了“大数据研发计划”,投资2亿美元,推动大数据提取、存储、分析、共享、可视化等领域的研究,并将其与超级计算和互联网投资相提并论。同年,中国政府20xx年也批复了“国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。开放、共享和智能的大数据的时代已经来临!
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
大数据转正心得体会总结
引言:随着信息时代的到来,大数据正逐渐成为人们生活和工作中不可或缺的一部分。作为一名即将转正的大数据从业者,我在实习期间积累了丰富的经验和深刻的体会。在这篇文章里,我将总结自己的大数据转正心得体会,分享给大家。
第一段:实习期间所积累的经验与体会。
在实习期间,我参与了多个大数据项目,通过与团队成员的紧密合作,我逐渐掌握了大数据的基本工具和技巧。首先,我学会了使用Hadoop、Spark等开源框架进行数据处理和分析,这让我对大数据处理的流程和方法有了更深入的理解。其次,我参与了数据清洗和预处理的工作,了解到良好的数据质量对于后续分析的重要性。最后,我还学会了使用机器学习和数据挖掘算法,以及数据可视化工具,将数据转化为可视化的报告,为决策者提供有据可依的参考。
第二段:如何适应一个不断变化的技术环境。
在大数据岗位上,技术更新迅速,新的工具和算法层出不穷。为了不被淘汰,我努力跟上这个快节奏的技术环境。首先,我定期阅读相关的技术文章和新闻,关注大数据领域的最新发展趋势。此外,我还参加了一些技术培训和研讨会,与行内的专业人士交流和学习。通过这些努力,我能够在实践中灵活运用最新的技术,提高自己在团队中的价值。
第三段:团队合作对于大数据项目的重要性。
在大数据项目中,团队合作是取得成功的关键。团队成员需要密切配合,分享各自的专业知识和经验。通过与团队成员的合作,我深刻认识到团队协作的价值。团队合作不仅能够减轻工作负担,还能够相互学习和提升。在团队中,我能够向经验丰富的前辈学习,从他们身上获得宝贵的指导和建议。与此同时,我也能够分享自己的想法和技术,为团队带来新的思路和动力。
第四段:培养自己的数据洞察力。
在大数据行业,拥有数据洞察力是至关重要的。数据洞察力是指通过大数据的分析和挖掘,发现其中隐藏的价值和规律。通过实习期间的经验,我积累了一些培养数据洞察力的方法。首先,我经常关注数据的趋势和变化,通过观察数据的变动和规律,来发现其中的意义。其次,我善于使用数据可视化工具,将数据转化为图表和图像,从中找到隐藏的关联和趋势。最后,我也善于提出问题和假设,并通过数据分析来验证和证实自己的猜想。
第五段:总结与展望。
在这段时间的实习中,我不仅深入学习了大数据的技术和工具,还培养了自己的团队合作和数据洞察力。通过自己的努力和他人的支持,我成功地将实习转正,并被公司聘为正式员工。展望未来,我将继续不断学习和成长,不断提升自己在大数据领域的技术和能力。我相信,在这个快速发展的时代,只有不断学习和适应变化,才能在竞争激烈的大数据行业中立于不败之地。
大数据大练兵总结心得体会
随着大数据时代的到来,数据分析已经成为了各行各业的重要工具。为了提高自身在数据分析领域的能力,我参加了一门名为“大数据大练兵”的培训课程。在这门课程中,我学到了许多有关数据分析的知识和技巧,并且通过实践实现了对所学知识的应用。在这篇文章中,我将总结我在学习和实践中的心得体会。
首先,在这门课程中,我学到了大数据分析的基础知识和方法。我了解了大数据分析的概念和意义,并学习了一些数据采集、数据清洗、数据处理和数据可视化的方法。这些知识为我进一步学习和应用数据分析提供了基础。在实践中,我深刻体会到了数据分析的重要性。通过分析数据,我能够发现其中的规律和趋势,从而为企业的决策提供有力的支持。
其次,我在实践中学会了如何运用数据分析工具。在这门课程中,我学习了一些常用的数据分析工具,如Python编程语言和Tableau可视化工具。通过这些工具,我能够更好地处理和分析大量的数据。在实践中,我通过使用这些工具,成功地完成了一些数据分析的项目。这不仅提高了我的数据分析能力,还提升了我在工作中的效率和产出。
第三,我在这门课程中学到了数据分析的方法和技巧。在实践中,我学会了如何制定正确的分析目标,并通过合适的数据分析方法达到这个目标。我也学会了如何避免一些常见的数据分析错误,如样本偏差和数据遗漏。这些方法和技巧使我在数据分析过程中更加有条理和有效,使我的分析结果更加准确。
第四,我通过这门课程认识到数据分析的局限性。在实践中,我发现数据分析并不是解决所有问题的万能钥匙。有时候,数据分析的结果并不能完全预测现实的情况。因此,我需要对数据分析的结果保持一定的谨慎和怀疑。同时,我也了解到了数据分析在隐私保护和伦理问题上的挑战。在进行数据分析时,我必须遵守法律和道德规范,并保护个人隐私。
最后,通过参加这门课程,我不仅学到了关于数据分析的知识和技能,还培养了自己的批判思维能力。在实践中,我学会了如何自主思考和判断,如何对数据进行合理地解读和分析。这种批判思维能力不仅在数据分析领域中有用,在我日常生活和工作中也起到了重要的作用。
总结起来,参加“大数据大练兵”课程是一次非常宝贵的学习经历。通过学习和实践,我不仅提高了自己的数据分析能力,还培养了自己的批判思维能力。我相信,在数据分析的道路上,我会继续努力学习和实践,不断提高自己的能力,成为一名优秀的数据分析师。
大数据转正心得体会总结
大数据转正是每位在大数据行业从业者必经的一个重要阶段。在这个阶段,我们需要进行自我总结与回顾,以确定自己在公司的发展方向,并制定未来的目标和计划。在这篇文章中,我将分享我在大数据转正过程中的心得体会总结。
第一段:明确自己的定位与职业发展方向。
在大数据转正阶段,我们需要对自己进行一个真实客观的评估。首先,我们需要明确自己的职业发展方向。是希望成为一名资深的数据分析师,还是转向数据工程师以提升技术能力?这样的明确定位有助于我们在未来的发展中更好地规划自己的职业道路。
同时,我们也需要审视自己的职业素养和技能。是否具备良好的数据分析能力?是否有扎实的编程基础?是否善于沟通与协作?基于这些评估结果,我们可以对自己进行进一步的提升与改进。
第二段:制定个人发展目标与计划。
在大数据转正阶段,我们需要对未来进行规划,制定个人发展目标与计划。这个过程中,我们应该考虑到自己的职业发展方向与公司的需求之间的匹配度。例如,如果我们希望成为一名优秀的数据分析师,那么我们就需要在数据分析技能的提升上下功夫;如果我们希望成为一名顶尖的数据工程师,那么我们就需要深入学习相关编程语言和技术。
目标的制定要具体可行,并且切合实际。我们可以将目标划分为短期目标与长期目标,并且逐步拆解,制定实现这些目标的具体计划和时间节点。同时,制定目标还需要考虑到自身的优势和不足,以及行业的发展趋势。只有制定切实可行的目标,我们才能更好地推动自己的职业发展。
第三段:主动学习与不断提升技能。
在大数据转正过程中,持续学习和不断提升个人技能是非常重要的。大数据行业发展迅速,技术日新月异。只有不断跟进行业热点和技术趋势,才能更好地适应行业的发展。
我们可以通过多种方式进行学习,如参加培训课程、参与技术社区、阅读相关书籍和博客等等。此外,还可以通过参加行业活动、交流会议等与同行业人士进行交流学习。与此同时,我们需要主动钻研实践,将学到的理论知识应用到实际工作中,加深对技术的理解和掌握。
第四段:积极主动参与项目与团队合作。
在大数据转正中,积极参与项目和团队合作是提升个人能力和职业发展的重要途径。通过参与项目,我们能够更好地运用自己的技能和知识,提升解决问题的能力。
在团队合作中,我们需要主动承担责任,积极发现并解决问题,提供有效的解决方案。与团队成员的良好合作和协调也是成功完成工作的关键因素。积极主动的参与项目和团队合作,不仅有助于个人技能的提升,还能够赢得他人的认可和信任,为自己的职业发展打下坚实的基础。
第五段:持续关注行业动态并保持求知欲。
在大数据转正后,我们不能止步于已经学到的知识和技能,还需要持续关注行业动态,并保持求知欲。只有了解行业发展趋势和新技术的应用,我们才能够把握住机遇与挑战。
我们可以通过阅读行业媒体和权威机构的报告、参与行业论坛和研讨会等方式,跟踪行业最新动态和前沿技术。同时,我们还可以保持学习的习惯,定期更新自己的知识和技能。
总之,大数据转正阶段是我们对自己的一个深入反思和总结的重要时刻。明确自己的定位与职业发展方向、制定个人发展目标与计划、主动学习与不断提升技能、积极主动参与项目与团队合作、持续关注行业动态并保持求知欲,是我们在这个阶段中需要做的事情。只有不断追求进步和完善自己,我们才能在大数据行业中不断发展,为自己的职业生涯添砖加瓦。
大数据保险的心得体会总结
大数据的出现,对人们的生活和工作产生了越来越大的影响,保险行业同样如此。保险业将所有的保险数据纳入数据平台统一管理,以提高保险公司的经营效率。在保险数据中,大数据分析技术最为常用,它能够深入挖掘数据背后的信息,为保险公司提供更多有效的保险率制定参考意见,并探索全新的产品和服务创新。以下将从大数据保险的数据建设、数据技术运用以及保险数据价值的挖掘等三个方面介绍本人的心得体会。
第二段:数据建设。
数据建设是大数据保险的重要组成部分,建设好数据平台对保险公司具有重要的现实意义。在我的工作中,为了让保险数据高效运作,我们始终把数据作为公司的重要资产,按照数据的来源划分为内部数据和外部数据。同时,数据管理人员对数据的分类标准、数据字典、数据安全等进行了严格把控,建立了一套高效且严密的数据保障体系。此外,我们还设置了数据管理规范、数据质量评估指标、数据清理标准等多种相关制度,确保数据的安全、可靠。
第三段:数据技术运用。
大数据保险采用的技术更多在数据处理上。我对于这一点的看法是,大数据保险不单单只是数据的分析、处理、挖掘,还需要利用云计算、人工智能等技术,从而实现基于大数据的智慧保险。以云计算为例,我们可以将具有共性的保险数据集中管理以及按需使用,使得保险公司可以动态调整计算资源,并能够有效地分配处理空间。而人工智能则更多地体现在大数据保险的图像识别和语音识别应用上。数据科学家和保险专管人员对于我公司所推出的数据技术,进行了深入的研究,使得我们的保险数据技术运用更加完善和有力。
第四段:保险数据价值的挖掘。
保险价值是大数据保险的核心之一,我们需要挖掘数据中的各种保险信息,为保险公司提供更加精准的预测模型和优质的服务。在我们的工作中,我们常常进行数据分析,从中提取有益的信息,如进行“预测分析”,找出数据中存在的规律,为保险公司提供更加稳定的经济增长。同时我们也经常利用数据下的洞察,通过大数据算法对保险数据进行分析、分类,绘制出各类保险的珍贵数据清晰的图表,使得保险公司可以更好地了解保险市场动态以及不同保险产品的使用情况等,从而更好地指导业务发展。
第五段:结论。
总的来看,大数据保险的数据建设、技术运用以及价值挖掘各具灵活性,我公司拥有一整套高效的保险数据管理体系,并通过技术运用及数据挖掘,有效地提升了保险业务经营效率以及市场占有率,给我们带来广泛的好处。今后,随着大数据应用的深入推广,保险数据分析技术的更新换代,保险技术数据的利用必将变得更加成熟和普及。我期待着未来大数据保险将带来多些惊喜和变化。
大数据就业心得体会总结
随着科技的发展,大数据已经成为当今社会的热门话题。作为一名大数据从业者,我深深感受到了大数据行业的迅速崛起以及它所带来的巨大机遇。在这个过程中,我积累了一些关于大数据就业的心得体会,希望能够通过本文与大家分享。
首先,掌握技术技能是大数据就业的基础。在大数据行业中,掌握一些基本的技术技能是非常必要的。例如,熟练使用Hadoop、Spark等大数据处理框架,掌握SQL、Python等编程语言,能够熟练运用数据挖掘、机器学习等算法。只有掌握了这些技能,才能够更好地应对复杂的数据分析和处理需求,提高工作效率。因此,不断学习和提高自己的技术水平是大数据从业者的必修课。
其次,实践能力和项目经验对于大数据就业至关重要。纸上得来终觉浅,绝知此事要躬行。在大数据行业,仅仅掌握理论知识是远远不够的,关键是能够将所学知识应用到实践中去。通过参与一些实际项目的工作,我们能够了解到实际工作的需求和挑战,并在解决实际问题的过程中提升自己的实践能力。同时,项目经验也是大数据从业者提升自己职业竞争力的重要因素。
第三,培养良好的沟通与团队合作能力是大数据从业者的必备素质之一。在大数据行业中,我们往往需要与不同背景、不同专业的人进行交流和合作。良好的沟通能力能够促进顺畅的信息传递,减少误解和冲突;团队合作能力能够帮助我们更好地与他人合作,在团队中发挥各自优势,共同完成任务。因此,培养良好的沟通与团队合作能力对于我们在大数据行业中的发展非常重要。
第四,保持对新技术的敏感和学习能力的培养非常重要。大数据行业是一个快速变化的行业,新的技术和工具层出不穷。因此,一名优秀的大数据从业者需要时刻保持对新技术的敏感性,并且能够主动学习和掌握新的知识。只有不断提升自己的学习能力,才能够适应行业的快速变化,保持竞争力。
最后,持续的职业发展规划是大数据从业者必须要有的。随着大数据行业的发展,大数据从业者的职业发展机会也越来越多。因此,我们需要不断反思自己的职业目标,并制定出一份合理的职业发展规划。通过不断地学习和努力,我们能够逐步实现自己的职业目标,并在大数据行业中取得更大的成就。
总而言之,大数据行业是一个充满机遇和挑战的行业。作为一名大数据从业者,我们需要不断学习和提升自己的技术水平,不断积累实践经验和项目经验,培养良好的沟通与团队合作能力,保持对新技术的敏感性和学习能力,并制定出合理的职业发展规划。相信只有这样,我们才能够在大数据行业中迅速成长,并取得更多的成功。
大数据转正心得体会总结
随着信息时代的到来,大数据的重要性日益凸显。大数据技术已成为许多企业的核心竞争力,对于数据分析师而言,转正是一个重要的里程碑。在我的转正过程中,我积累了许多经验和体会。在这篇文章中,我将分享我在大数据转正过程中的心得体会。
首先,专业知识的掌握是转正的关键。作为一名数据分析师,我们必须掌握数据分析的基本理论和方法。这包括数据采集、数据清洗、数据分析和数据可视化等方面的知识。在我转正的过程中,我加强了对这些方面的学习,并通过实践项目巩固了所学知识。同时,我也注重学习相关的编程语言和工具,如Python和SQL,以提高数据处理和分析的效率。这些专业知识的掌握为我在转正中的表现打下了坚实的基础。
其次,团队合作是转正成功的关键要素。在大数据领域,很少有人可以独立完成所有的任务。因此,良好的团队合作能力是必不可少的。在我转正的过程中,我积极与团队成员进行合作,互相学习和帮助。我们一起解决了许多困难的问题,提高了工作效率。此外,我也学会了倾听他人的意见和建议,并及时调整自己的工作计划。这些团队合作的经验让我深刻认识到集体的力量,也增强了我与团队成员的沟通能力。
第三,自我反思和学习能力也是非常重要的。在转正过程中,我不断进行自我反思,总结经验教训,并及时进行调整。我通过参加培训课程和研讨会,扩大了自己的知识面。同时,我也鼓励自己保持持续学习的态度,关注行业的最新动态和技术的发展。这种积极向上的学习态度使我在工作中能够应对各种变化和挑战。
第四,敢于创新和担当是转正中的重要品质。在大数据领域,新技术和新方法的出现使得我们有机会进行创新。在我转正的过程中,我敢于尝试新的分析方法和工具,并且在实践中验证其有效性。我也乐于承担更多的责任和挑战,提出解决问题的方案,并在实践中不断完善。这种创新和担当的精神让我在团队中得到了更多的认可,也为我在转正中取得了优异的成绩。
最后,保持积极的心态也是非常重要的。在大数据领域,技术的发展和市场的竞争都具有一定的不确定性。在我转正的过程中,我积极应对工作中的各种挑战和压力,保持乐观和积极的心态。我相信自己的努力和付出会得到认可,并且我相信每一个困难都是一个机会。这种积极的心态让我在转正中不断超越自我,取得了较好的成绩。
总的来说,大数据转正过程是一个考验我们专业知识、团队合作、自我反思、创新担当和心态等方面能力的过程。通过这次转正,我深刻认识到了这些能力的重要性,并在实践中不断提升自己。我相信这些经验和体会将对我今后的发展产生积极的影响,使我成为一名更加优秀的数据分析师。
大数据保险的心得体会总结
大数据已经成为当今社会的热门话题,在各个领域中发挥着越来越重要的作用。而保险行业也逐渐发现了大数据的威力,越来越多的保险公司开始将大数据应用到保险业务中。近年来,我有幸参与大数据保险项目,深刻认识到大数据对于保险行业的重要性。在这个过程中,我获得了一些心得体会和总结。
第二段:大数据带来的机遇。
大数据的到来,为保险行业带来了巨大的机遇。促进了保险公司信息化、智能化、精准化,提高了保险公司的核心竞争力。利用大数据,保险公司可以更加深入地了解客户,精准定位客户需求,推出有针对性的保险产品和服务,提高销售能力。同时,大数据可以协助保险公司制定风险评估模型,提高数据分析和预测能力,大幅降低亏损风险。
第三段:数据管理的挑战。
在大数据保险项目中,数据准确性和隐私保护是数据管理的两个重要挑战。大数据的产生和处理需要进行广泛的数据采集和互操作,而数据的准确性直接影响到数据的使用价值。在处理大量的客户信息时,需要保障客户数据的完整性和准确性。同时,在对数据进行分析的过程中,必须妥善保护客户隐私。因此,在数据收集和使用过程中需要加强数据质量管理和数据安全保护。
大数据保险作为新兴的保险业务模式,受到了保险行业的广泛关注。未来,大数据保险将会成为保险行业的主要业务模式之一。大数据能够帮助保险公司进行更加精准的市场营销,促进了保险公司的业务拓展和新产品的开发。同时,大数据分析也可以快速了解客户需求和市场动态,帮助保险公司做出更加明智的业务决策。未来,大数据保险将会成为保险行业的重要业务增长点。
第五段:结论。
大数据保险已经成为保险行业的新时代标志。它为保险公司带来了巨大的机遇和挑战,促进了保险业务的创新和转型升级。大数据保险的未来前景非常广阔,但是要实现这个目标,保险公司需要在数据管理和数据分析等方面持续投入,加强技术实力和管理能力,这是迈向未来的必要保障。
大数据就业心得体会总结
大数据行业的快速发展带来了越来越多的就业机会和挑战。作为一名大数据从业者,我深刻地认识到了这个行业存在的机遇和竞争。通过自己的实践经验和与同行的交流,我总结出了一些关于大数据就业的心得体会,希望能够与大家分享。
首先,在大数据行业就业,除了扎实的专业知识和技能,人际关系的管理也是非常重要的。在实际工作中,我发现通过与同事的合作与交流可以快速提升自己的能力,并获得更多的机会。因此,建立良好的人际关系和团队合作能力是一个大数据从业者必备的素质。通过与同事的沟通,不仅可以解决问题和共享经验,还可以学到更多的技术和行业知识,为自己的职业发展打下坚实的基础。
其次,不断学习和更新技术知识也是大数据从业者必须具备的品质。大数据技术更新换代迅猛,大数据从业者需要随时掌握最新的技术和行业动态。在我自己的求职经历中,我发现许多公司都对候选人的学习能力和适应能力非常看重。因此,我时刻保持学习的态度,加强自己专业知识,并努力提升自己的技术能力。我经常参加各种行业研讨会和培训班,不断学习新的知识和技术,以便能够更好地适应工作的需求。
第三,在大数据行业就业中,要勇于承担责任和挑战。大数据行业注重实战能力和解决问题的能力,要求从业者能够独立思考和解决复杂的问题。在我的工作经验中,我常常面临着各种各样的挑战,需要找到最佳的解决方案。这需要我有足够的勇气和责任心来承担起这些挑战,并且主动地解决问题。通过在实践中不断学习和提升自己的能力,我渐渐意识到,只有勇于承担责任和挑战,才能在这个竞争激烈的行业中脱颖而出。
第四,积极主动地拓展自己的人脉也是在大数据行业就业中非常重要的一环。在我自己的职业发展过程中,我发现通过参加各种行业的活动和社交聚会,可以结识更多的业内人士,并获得更多的职业机会。为了更好地发展自己的职业,我积极参加各种行业的社交活动和研讨会,与同行进行交流和合作。通过这些渠道,我得到了不少的资源和机会,并且结识了一些在业界有较高影响力的人物。这些人脉关系在我求职和职业发展中起到了非常重要的作用。
最后,要保持积极乐观的心态和专注于工作。大数据行业是一个充满机遇和挑战的领域,我们需要时刻保持积极向上的心态,以应对各种困难和压力。在我的工作中,我经常面临着各种各样的问题和挑战,但我始终坚持用积极的心态去面对。我相信只要专注于自己的工作,并保持持续不断的努力,就一定能够取得好的成绩和职业发展。
总之,大数据行业就业是一个充满机遇与挑战的过程。通过建立良好的人际关系、不断学习和更新技术知识、勇于承担责任和挑战、积极拓展人脉以及保持积极乐观的心态,我们就能够在这个行业中获得更多的职业机会和发展空间。希望我的分享能够给大家带来一些帮助和启发,也希望大家一起共同努力,成为优秀的大数据从业者。
大数据体会心得体会
随着信息技术的飞速发展,大数据越来越成为一个热门话题,以其海量、高速、多样化和价值挖掘四个特点,吸引着越来越多的人关注。作为一个信息管理专业的学生,在学习了大数据相关课程并进行实际实践之后,我对于大数据的感受愈加深刻,本文就是对大数据的一些心得总结。
大数据的价值,不仅体现在了数据的存储和处理能力上,更体现在了对于数据的价值提升和利用上。以商业为例,通过对于海量数据的分析,企业可以更好地了解市场的需求和趋势,做到精确营销,提高营收。在医疗、安防等领域,大数据的运用更是可以让治疗更加精准、安全,社会治安更有保障。总之,大数据为各种行业的发展注入了新的生机和动力。
第三段:挑战与机遇。
但是,随着大数据应用的深入,也带来了诸多挑战。首先是数据质量问题,由于日积月累的数据泛滥,其中也不乏数据噪音、数据缺失等不良信息,如何去除杂质提升数据质量成为重要问题。其次,数据安全也成为了一个让人头疼的问题,因为数据传输和存储中的漏洞,容易被黑客攻击,这也是大数据的一大风险。但是,与此同时,机遇与挑战并存。对这些问题的解决,需要通过技术的革新和人才的培养,正是大数据行业发展的良机,也为我们提供了更多的机会。
第四段:大数据技术。
大数据技术是支撑大数据应用的重要基础。在处理海量数据上,传统的关系型数据库已经无法满足需求,而Hadoop、NoSQL、Spark等大数据技术的进入,大幅降低了海量数据的处理成本和时间,极大地提高了业务智能分析的能力,为大数据的广泛应用提供了技术支持。但是,由于技术本身具有复杂性和高技术含量,因此需要不断地探索、应用、完善,如此才能推动新技术的创新和发展。
第五段:未来展望。
目前,大数据的应用逐渐趋于成熟,从数据收集、整理、处理到数据分析都得到了较好的落实,但是,这只是大数据发展的小小起步,未来大数据还将更广泛地应用于各个领域。在大数据的推动下,人工智能、物联网等新兴技术也会迎来新的发展机遇。因此,我们需要不断地学习和积累经验,在专业性技能的基础上增加创造性思维和创新意识,以适应大数据时代的发展。
总结:
大数据是一个浩瀚无比的世界,它带来了巨大的价值和机遇,但也同时伴随着种种挑战和风险。在大数据时代,只有通过不断学习、完善技能,才能适应和引领时代的变革,让大数据为人类的生产和生活带来更大的便利和奇迹。
hadoop大数据心得体会
Hadoop作为大数据领域中的重要工具,其开源的特性和高效的数据处理能力越来越得到广泛的应用。在实际应用中,我们对Hadoop的使用也逐步深入,从中汲取了许多经验和教训。在此,我会从搭建Hadoop集群、数据清洗、分析处理、性能优化和可视化展示五个方面分享一下我的心得体会。
一、搭建Hadoop集群。
搭建Hadoop集群是整个数据处理的第一步,也是最为关键的一步。在这一过程中,我们需要考虑到硬件选择、网络环境、安全管理等方面。过程中的任何一个小错误都可能会导致整个集群的崩溃。基于这些考虑,我们需要进行详细的规划和准备,进行逐步的测试和验证,确保能够成功地搭建起集群。
二、数据清洗。
Hadoop的数据处理能力是其最大的亮点,但在实际应用中,数据的质量也是决定分析结果的关键因素。在进行数据处理之前,我们需要对数据进行初步的清洗和预处理。这包括在数据中发现问题和错误,并将其纠正,以及对数据中的异常值进行排除。通过对数据的清洗和预处理,我们可以提高数据的质量,确保更加准确的分析结果。
三、分析处理。
Hadoop的大数据处理能力在这一阶段得到了最大的展示。在进行分析处理时,我们首先需要确定分析目标,并对数据进行针对性的处理。数据处理的方式包括数据切分、聚合、过滤等。我们还可以利用MapReduce、Hive、Pig等工具进行分析计算。在处理过程中,我们还需要注意对数据的去重、筛选、转换等方面,从而得到更为准确的结果。
四、性能优化。
在使用Hadoop进行数据处理的过程中,内存的使用是其中重要的方面。我们需要在数据处理时对内存使用进行优化,提高算法的效率。在数据读写和网络传输等方面,我们也需要尽可能地提高其效率,来增强Hadoop的处理能力。这一方面需要的是合理的调度策略、良好的算法实现、有效的系统测试等方面的支持。
五、可视化展示。
通过对数据的处理和分析,我们需要对获得的结果进行展示。在这一方面,我们可以使用Hadoop提供的一系列Web界面进行展示,同时还可以利用一些可视化工具将数据进行图像化处理。通过这些方式,我们可以更加直观地观察到数据分析的结果,从而更好地应用到实际业务场景中。
总之,Hadoop的应用已逐渐地从科技领域异军突起,成为处于大数据领域变革前沿的重要工具。在实际应用中,我从搭建Hadoop集群、数据清洗、分析处理、性能优化和可视化展示五个方面体会到了很多经验和教训,不断地挑战和改进我们的技术与思路,才能更好地推动Hadoop的应用发展。
大数据体会心得体会
在数字化时代,大数据已成为众多企业和组织不可或缺的工具。大数据能够帮助企业做出更准确的商业决策,提高效率和竞争力。在我的工作中,我也深刻感受到了大数据的重要性。下面我将分享我在大数据分析方面的心得体会。
第二段:对大数据的初步认识。
一开始,我对于大数据只有一些模糊的概念,主要是基于科幻小说和电影中的场景想象的。然而,在我的第一个大数据项目中,我才真正理解到大数据的意义和价值。首先,大数据能够收集、存储和处理大量的数据;其次,大数据能够分析和挖掘数据,提供有价值的信息;最后,大数据在实际应用中能够帮助企业做出更准确的商业决策。
第三段:大数据项目中的挑战和解决方法。
当我参与到大数据项目中时,我遇到的最大困难是如何处理大量的数据。不同的数据来源和格式,清理和整合起来非常困难。但在实践过程中,我找到了一些解决方案。首先,我使用了一些现有的数据处理工具和技术,例如Hadoop,Spark和Python;其次,我和我的团队利用数据科学的方法研究数据,了解数据的模式和规律;最后,我积极寻找和分析外部数据,加以比较和引用,以获得更完整和准确的数据分析结果。
第四段:大数据给我带来的收获和成就。
尽管在大数据项目中遇到了一些挑战,我也收获了不少成就。通过对大量数据的分析,我更好地了解市场趋势和客户需求,并为企业提供了更准确和有价值的信息。我的工作和分析结果得到了客户的认可和表扬,这使我在团队中的地位和影响力得到了提升。同时,我也发现自己在数据分析和科学方面的能力得到了很大提升,这有助于我在未来更好地应对相关项目。
第五段:总结。
总之,在数字化时代,大数据已经成为企业和组织不可或缺的工具。我的工作体验和体会告诉我,大数据能够为企业提供更准确、有价值和可操作的信息,提高企业的效率和竞争力。在未来,我会继续深入研究和学习这一领域,以便更好地应对相关挑战和机遇。
《大数据》心得体会
近年来,随着信息技术的迅猛发展,大数据已逐渐成为人们生活中的一个热门话题。而《大数据》这本书,作为一部关于大数据的权威著作,让我对大数据有了更深入的认识与理解。通过阅读这本书,我不仅对大数据的概念有了一定的了解,更发现了大数据在各个领域中的应用与挑战,并对个人隐私保护等问题产生了思考。
首先,本书对大数据的概念进行了详尽的阐述。大数据并不只是指数量庞大的数据,更重要的是指利用这些数据进行分析、挖掘和应用的过程。这本书通过实际案例和统计数据,将数据的价值和潜力展示给读者。它告诉我们,大数据的处理能力和分析能力将会显著地提升人类社会的效率和智能化水平。
其次,本书探讨了大数据在各个领域中的应用与挑战。在商业领域,大数据的应用已经为企业带来了更多的商机和竞争优势。通过分析消费者的购买记录、兴趣爱好以及社交媒体的内容,企业能够更准确地把握用户的需求,为用户提供个性化的服务。然而,由于大数据的处理涉及到海量的数据、复杂的算法以及庞大的计算能力,公司需要具备相关技能和资源才能有效地利用大数据。在政府领域,大数据也能够帮助政府提供更高效的公共服务,更好地理解民众的需求。然而,大数据的应用也引发了隐私保护和数据安全等问题,需要政府制定相关法律法规来保护个人隐私和数据安全。
再次,本书对大数据对个人隐私保护的问题进行了探讨。随着大数据的发展,人们的个人信息被不断收集、分析和应用,我们的隐私已经受到了严重的侵犯。而大数据的应用具有隐私泄露的潜在风险,人们需要保护自己的个人隐私。为了解决这一问题,政府和企业需要共同努力,加强信息安全和隐私保护的技术手段。同时,人们也应该提高自己的信息安全意识,合理使用网络和社交媒体,避免个人信息的泄露。
最后,本书还介绍了大数据对社会的影响。大数据的广泛应用,改变了人们的生活方式和工作方式。我们的社会变得更加数字化、智能化。例如,在医疗领域,大数据的应用使得医生可以更准确地进行病情诊断和治疗方案选择。在城市规划方面,大数据的应用使城市更加智能化,提高了公共交通的运营效率和人们的生活质量。然而,大数据的应用也带来了一些问题,如信息不对称和社会不平等等。对于这些问题,我们需要进一步研究和探索,以找到解决之道。
综上所述,《大数据》这本书给我留下了深刻的印象。通过阅读这本书,我对大数据有了更深入的认识与理解,了解到了大数据的概念、应用与挑战,并开始思考大数据对于个人隐私保护和社会的影响。我相信,随着大数据技术的不断发展,大数据将进一步改变我们的生活和工作方式,为我们带来更多的便利和创新。我们需要不断学习和探索,以适应这个数字化时代的要求。
大数据心得体会
信息时代的到来,我们感受到的是技术变化日新月异,随之而来的是生活方式的转变,我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。
信息和数据的定义。维基百科解释:信息,又称资讯,是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据:或称资料,指描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。
在大数据时代,大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理。小数据停留在说明过去,大数据用驱动过去来预测未来。数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。大数据是在互联网背景下数据从量变到质变的过程。小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?金融业业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的学习空间、可以有更精准的决策判断能力这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
一部似乎还没有写完的书。
——读《大数据时代》有感及所思。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!
更何况还有两个更可怕的事情。
其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
合纤部车民。
2013年11月10日。
一、学习总结。
采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现。
对企业未来运营的预测。
在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。
阅读大数据心得体会阅读大数据报告
近年来,“大数据”这个概念突然火爆起来,成为业界人士舌尖上滚烫的话题。所谓“大数据”,是指数据规模巨大,大到难以用我们传统信息处理技术合理撷取、管理、处理、整理。“大数据”概念是“信息”概念的3.0版,主要是对新媒体语境下信息爆炸情境的生动描述。
我们一直有这样的成见:信息是个好东西。对于人类社会而言,信息应该多多益善。这种想法是信息稀缺时代的产物。由于我们曾吃尽信息贫困和蒙昧的苦头,于是就拼命追逐信息、占有信息。我们甚至还固执地认为,占有的信息越多,就越好,越有力量。但是,在“大数据’时代,信息不再稀缺,这种成见就会受到冲击。信息的失速繁衍造成信息的严重过剩。当超载的信息逼近人们所能承受的极限值时,就会成为一种负担,我们会不堪重负。
信息的超速繁殖源自于信息技术的升级换代。以互联网为代表的新媒体技术打开了信息所罗门的瓶子,数字化的信息失速狂奔,使人类主宰信息的能力远远落在后面。美国互联网数据中心指出,互联网上的数据每两年翻一番,目前世界上的90%以上数据是近几年才产生的。,数字存储信息占全球数据量的四分之一,另外四分之三的信息都存储在报纸、胶片、黑胶唱片和盒式磁带这类媒介上。,只有7%是存储在报纸、书籍、图片等媒介上的模拟数据,其余都是数字数据。到,世界上存储的数据中,数字数据超过98%。面对数字数据的大量扩容,我们只能望洋兴叹。
“大数据”时代对人类社会的影响是全方位的。这种影响究竟有多大,我们现在还无法预料。哈佛大学定量社会学研究所主任盖瑞·金则以“一场革命”来形容大数据技术给学术、商业和政府管理等带来的变化,认为“大数据”时代会引爆一场“哥白尼式革命”:它改变的不仅仅是信息生产力,更是信息生产关系;不仅是知识生产和传播的内容,更是其生产与传播方式。
我们此前的知识生产是印刷时代的产物。它是15世纪古登堡时代的延续。印刷革命引爆了人类社会知识生产与传播的“哥白尼式革命”,它使得知识的生产和传播突破了精英、贵族的垄断,开启了知识传播的大众时代,同时,也确立了“机械复制时代”的知识生产与传播方式。与印刷时代相比,互联网新媒体开启的“大数据”时代,则是一场更为深广的革命。在“大数据”时代,信息的生产与传播往往是呈几何级数式增长、病毒式传播。以互联网为代表的媒介技术颠覆了印刷时代的知识生产与传播方式。新媒体遍地开花,打破了传统知识主体对知识生产与传播的垄断。新媒体技术改写了静态、单向、线性的知识生产格局,改变了自上而下的知识传播模式,将知识的生产与传播抛入空前的不确定之中。在“大数据”时代,我们的知识生产若再固守印刷时代的知识生产理念,沿袭此前的知识生产方式,就会被远远地甩在时代后面。
(节选自2013.2.22《文汇读书周报》,有删改)。
大数据数据预处理心得体会
随着信息技术的飞速发展,现代社会中产生了大量的数据,而这些数据需要被正确的收集、处理以及存储。这就是大数据数据预处理的主要任务。数据预处理是数据分析、数据挖掘以及机器学习的第一步,这也就意味着它对于最终的数据分析结果至关重要。
第二段:数据质量问题。
在进行数据预处理的过程中,数据质量问题是非常常见的。比如说,可能会存在数据重复、格式不统一、空值、异常值等等问题。这些问题将极大影响到数据的可靠性、准确性以及可用性。因此,在进行数据预处理时,我们必须对这些问题进行全面的识别、分析及处理。
第三段:数据筛选。
在进行数据预处理时,数据筛选是必不可少的一步。这一步的目的是选择出有价值的数据,并剔除无用的数据。这样可以减小数据集的大小,并且提高数据分析的效率。在进行数据筛选时,需要充分考虑到维度、时间和规模等方面因素,以确保所选的数据具有合适的代表性。
第四段:数据清洗。
数据清洗是数据预处理的核心环节之一,它可以帮助我们发现和排除未知数据,从而让数据集变得更加干净、可靠和可用。其中,数据清洗涉及到很多的技巧和方法,比如数据标准化、数据归一化、数据变换等等。在进行数据清洗时,需要根据具体情况采取不同的方法,以确保数据质量的稳定和准确性。
第五段:数据集成和变换。
数据预处理的最后一步是数据集成和变换。数据集成是为了将不同来源的数据融合为一个更综合、完整的数据集合。数据变换,则是为了更好的展示、分析和挖掘数据的潜在价值。这些数据变换需要根据具体的研究目标进行设计和执行,以达到更好的结果。
总结:
数据预处理是数据分析、数据挖掘和机器学习的基础。在进行预处理时,需要充分考虑到数据质量问题、数据筛选、数据清洗以及数据集成和变换等方面。只有通过这些环节的处理,才能得到满足精度、可靠性、准确性和可用性等要求的数据集合。
抖音大数据心得体会
一、引子:抖音大数据在当今社会中扮演着越来越重要的角色,逐渐改变了人们的生活方式。然而,我们是否曾思考过抖音大数据带来的种种影响和启示?通过深入研究抖音大数据,我们不仅可以了解用户喜好和趋势,还可以更好地了解社会动态和市场潜力。本文将通过对抖音大数据的研究和分析,探讨其背后的心得与体会。
二、数据驱动推动产品创新的发展:抖音大数据作为一个强大的信息收集和分析工具,可以帮助企业了解用户需求,并根据数据追踪用户的兴趣和喜好,从而提供更贴合用户需求的产品和服务。通过分析用户的行为和反馈,企业可以及时的调整产品,满足用户的个性化需求。抖音大数据不仅成为了产品改进的基础,也促进了创新的发展,推动了行业的变革。
三、抖音大数据推动市场营销的变革:随着抖音的快速发展,越来越多的企业意识到了抖音大数据对于市场营销的重要性。通过运用抖音大数据对用户的兴趣和喜好进行分析,企业可以更好地定位目标用户,制定有效的营销策略。同时,通过抖音大数据分析用户的行为和反馈,企业可以更加精确地了解用户需求,提供更全面的服务,从而提高市场竞争力。
四、社交与娱乐的融合:抖音大数据的成功也揭示出人们对于社交和娱乐的需求。抖音作为一个社交平台,不仅提供了用户间互动的机会,还通过丰富多样的娱乐内容吸引了大量的用户。通过抖音大数据,我们可以看到人们对于娱乐的需求和偏好,也可以看到他们对社交的渴望。同时,抖音大数据也影响了人们的生活方式,改变了人们获取信息和娱乐的方式。
五、数据隐私与安全问题:抖音大数据的收集和应用无疑带来了许多便利,但同时也引发了许多关于数据隐私和安全的担忧。许多用户担心个人信息的泄露和滥用,担心自己的数据被用于不正当的用途。因此,抖音和其他平台需要加强对用户数据的保护,采取更严格的措施防止数据泄露和滥用,以增强用户的信任和满意度。
总结:抖音大数据的快速发展和广泛应用对于社会和市场产生了深远的影响。通过对抖音大数据的研究和分析,我们可以更好地了解用户的需求和行为,并据此提供更合适的产品和服务。然而,我们也不能忽视数据隐私和安全的问题,涉及到用户利益和社会发展的重要议题。只有在合理合法的前提下,抖音大数据才能为社会和企业带来更大的利益和价值。